Home energy storage system Full-time Job
2 years ago - Executive / Head Chef - Davangere - 33 viewsJob Details
Critical review of energy storage systems
This review article critically highlights the latest trends in energy storage applications, both cradle and grave. Several energy storage applications along with their possible future prospects have also been discussed in this article. Comparison between these energy storage mediums, as well as their limitations were also thoroughly discussed. Suggestions and solutions in mitigating some of these challenges in order to improve the overall performance of these energy systems have also been analysed in this investigation. In spite of the accelerated growth in home energy storage system, there is still a grave need for further investigations, in order to reduce their costs. Further research activities will reduce the cost of some of these novel technologies, thereby accelerating their commercialization as well as making them better competitors against traditional energy storage mediums.
Energy systems are dynamic and transitional because of alternative energy resources, technological innovations, demand, costs, and environmental consequences. The fossil fuels are the sources of traditional energy generation but has been gradually transitioned to the current innovative technologies with an emphasis on renewable resources like solar, and wind. Despite consistent increases in energy prices, the customers’ demands are escalating rapidly due to an increase in populations, economic development, per capita consumption, supply at remote places, and in static forms for machines and portable devices. The energy storage may allow flexible generation and delivery of stable electricity for meeting demands of customers. The requirements for energy storage will become triple of the present values by 2030 for which very special devices and systems are required. The objective of the current review research is to compare and evaluate the devices and battery energy storage system presently in use and anticipated for the future. The economic and environmental issues as well as challenges and limitations have been elaborated through deep and strong consultation of literature, previous research, reports and journal. The technologies like flow batteries, super capacitors, SMES (Superconducting magnetic energy storage), FES (Flywheel Energy Storage), PHS (Pumped hydro storage), TES (Thermal Energy Storage), CAES (Compressed Air Energy Storage), and HES (Hybrid energy storage) have been discussed. This article may contribute to guide the decision-makers and the practitioners if they want to select the most recent and innovative devices and systems of energy storage for their grids and other associated uses like machines and portable devices. The characteristics, advantages, limitations, costs, and environmental considerations have been compared with the help of tables and demonstrations to ease their final decision and managing the emerging issues. Thus, the outcomes of this review study may prove highly useful for various stakeholders of the energy sector.
The household energy storage system necessarily require smooth, balanced, reliable and quality supply (maintaining constant voltage and frequency) to the customers without any breaks and potential damage to electrical appliances. The strong variations always exist in demand of electricity at different times. Hence, there could be certain times when the energy production will be more than demand and vice versa. Just to quote an instance, the peak demand of GCC countries in summer is twice the off-peak summertime requirement due to the running of air conditioners and is thrice of winter peak times (Al-Badi and AlMubarak, 2019). For balancing and matching the demand and supply, the storage of energy is a necessity.
The types and uses of energy had been dynamically changing in history because Beltran (2018) regarded energy as a living, evolving, and residential energy storage system, which remained an integral part of civilizations and their development. The sun was the only source of heat and light while wood, straw and dried dung were also burnt. The horses and other animals, wind, and water were used for transportation, working in the fields, grinding grains, pumping water, and driving the simple machines in very earlier times. Later, the power of steam was harnessed which dated back to ancient Alexandria. The steam engines remained in use till the 17th and 18th centuries. Simultaneously, coal was also used for heating and production of steam from water. By the late 1800s, petroleum was introduced as a fuel and is still in wider use. Thomas Alva Edison installed the first electric light plant in the city of New York in 1880. (UCS, 2006). The invention of electricity revolutionized energy usage and consequently, industrial revolutions happened on the globe. Currently, electricity is the dominating form of energy all over the world. The introduction of nuclear energy started in the 1950s and was increasing rapidly, but the Chernobyl accident in Russia (1986) and some later incidents in India and other countries discouraged its spreading due to safety concerns and social pressure (King, 2019).
The energy consumption has increased tremendously after the industrial revolutions due to an increase in population, invention of new techniques and machines, economic development, accessing remote and far flanged areas, and big changes in the lifestyle. According to estimates, energy use was doubling in each decade in earlier times (UCS, 2006). Simultaneously, a significant increase also took place in the production of energy, especially electricity. Among other drivers of increasing demand for energy are selling the electricity even below the actual cost in GCC and some other countries, wastage due to usage and building designs, and lower efficiency of generation and delivery equipment (Al-Badi and AlMubarak, 2019). Nevertheless, production could not match demands in so many developing countries. According to estimates, the world’s primary energy consumption in 2015 remained as 146,000 terawatt-hours (TWh), 25 times higher than the year 1800 (Ritchie and Roser, 2018). As the data values are not mostly same when reported by different sources, in another report (BP Statistical Review, 2019), the global energy consumption was 136,129 TWh in 2008 and 161,250 TWh in 2018. There has been a 2.9% increase in consumption for the 10 years. World Energy Council (2019) while finding scenarios and exploring innovative pathways to 2040, contemplate that the globe will be entering in a new energy era promising enough, clean, and residential solar energy storage for all communities with increasing uses and users.